If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-43x+66=0
a = 7; b = -43; c = +66;
Δ = b2-4ac
Δ = -432-4·7·66
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-43)-1}{2*7}=\frac{42}{14} =3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-43)+1}{2*7}=\frac{44}{14} =3+1/7 $
| 2=(8p+10) | | 2=(8p=10) | | 10x^2-43x+66=0 | | 2=(8p=0) | | x/9/20x-4/9=60 | | 16+4r=-7r+8(r-1) | | 1/3(3x-1)=-1/5-3-5 | | .4(8x+16)=1.2-(x+2) | | (-8k)=24 | | .55x=166 | | 23x+32=-14 | | 2/3(12x-6)=-4 | | -3(7x-4)=-21x-12 | | 4r-7r+7+r=0 | | 23x+19=3(5x-9)+8x+46 | | (10x+10)=(6x+10) | | a^2+a^2=3600 | | 2(x-9)=52 | | 16=7|p+8|+44 | | b−(3/16)=5/16 | | 4(z+3-4=8(1/2z+1) | | 4(z+3-4=8(1/2z+1 | | 3x+78=20x-16 | | 6*x=78 | | 6*x=74 | | 3+(1/4)x=9 | | 3x-78=20x-16 | | 1/2*x=12 | | 2d-4=10+5d | | y4+3=5 | | 2b-4=10+5 | | 2.47x^2-23X=24 |